Beiträge

Sichtfläche am Bahnübergang

Wie ist die Sichtfläche am Bahnübergang abgegrenzt? Welche Sichtachsen sollen frei sein, um einen nicht technisch gesicherten Bahnübergang in Betrieb zu nehmen? Bei welchen Sichtflächenverletzungen muss der Schienenverkehr welche Geschwindigkeitseinbrüche in Kauf nehmen? An welchen Stellen hat der Planer Anpassungen an der Landschaft oder am Erscheinungsbild vorzunehmen. Ist eine nicht technische Bahnübergangslösung überhaupt möglich?

Alle Antworten dazu liefert unser Sichtflächenrechner für die Gestaltung von nicht technisch gesicherten Bahnübergängen:

Zu den Eingabewerten des Bahnübergangsrechners zählen neben den Geschwindigkeiten für Straße und Schiene auch Verzögerungswerte, Reaktionszeiten und vieles mehr. Aus den Eingabewerten resultieren dann entsprechende Sehpunkt- und Sichtpunktdistanzen, welche zusammen mit dem Bahnübergang selbst das sogenannte Sichtdreieck aufspannen. Anhand der Sichtfläche am Bahnübergang ergibt sich, ob noch weitere sicherungstechnische Maßnahmen wie beispielsweise Geschwindigkeitseinbrüche auf Straße und Schiene erforderlich sind.

Berechnung der Fahrzeit

Die planmäßige Fahrzeit eines Zuges von einem Ort zu einem lässt sich auf verschiedene Art und Weisen berechnen. Neben der klassischen Berechnungsmethode mit Formeln und Tabellen gibt es zunehmend die Möglichkeit, die Fahrzeit mittels Simulationsprogrammen zu ermitteln. Außerdem werden die Werte mit Erfahrungswerten und stattgefundenen Testfahrten untermauert. Alle Methoden unterliegen jedoch den physikalischen Grundprinzipien, die dieses Themenkapitel ausführlich anspricht. Am Anfang der Berechnung stehen sogenannte Zugkraft Geschwindigkeitsdiagramme, auch bekannt unter dem Z-V-Diagramm. Anhand dieser Kräfte und den Widerstandskräften resultieren die Zugkraftüberschüsse. Diese wiederum sind direkt proportional zum Beschleunigungsvermögen des Zuges. Anhand der Beschleunigungswerte generieren sich die Geschwindigkeitsdiagramme und die Zeit-Weg-Diagramme.

Die entsprechenden Abhängigkeiten sind jedoch komplizierter als man denkt, zumal die Beschleunigung nicht konstant oder linear in Abhängigkeit des Weges ist. Noch komplizierter wird es, wenn man einen individuellen Fahrstil einer tatsächlich stattgefundenen Fahrt untersucht. Alle Zusammenhänge thematisieren wir für Beschleunigungsabschnitte, Ausrollfahrten, Beharrungsfahrten und Verzögerungsabschnitte ausführlich und anschaulich mit unseren Animationen.

In Arbeit: Fahrzeitberechnung

Derzeit befassen wir uns intensiv mit dem Thema Fahrzeitberechnung in der Fahrplantechnik. Der Startpunkt sind dabei physikalische Formeln im Teilgebiet Mechanik. Mit diesen lassen sich dann die Zeit und Ortsinformationen von Beschleunigungsabschnitten, Beharrungsfahrtabschnitten und Verzögerungsabschnitten theoretisch ableiten. Jedoch gibt es in der Verkehrstechnik Hindernisse. Die Berechnung kann nicht rein analytisch erfolgen. Grund dafür ist die Tatsache, dass beispielsweise die Beschleunigung weder konstant noch linear in Abhängigkeit der Geschwindigkeit ist. Das macht die Sache kompliziert.

Mit unserem Themenkapitel behandeln wir diese Komplexität aber so, dass man die Abhängigkeiten über Beschleunigungsdiagramme, Geschwindigkeitsdiagramme und Zeit Weg Diagrammen sehen kann. Unterstütz wird die Darstellung mit den sogenannten Z-V Diagrammen. Das sind Zugkraft Geschwindigkeitskennlinien. Dadurch wird deutlich, warum Züge sich so in der Fahrphysik verhalten, wie wir es als Fahrgast im Unterbewussten wahrnehmen. Mit dem Thema der Fahrzeitberechnung wollen wir eine wichtige Lücke in unserer Videoserie schließen.

Maximal möglicher Streckendurchsatz

Wie groß ist der maximal mögliche Streckendurchsatz unter bestimmten verschiedenen Annahmen wie Fahrtgeschwindigkeit oder Zuglänge? Inwiefern beeinflusst das vorherrschende Zugsicherungssystem die Sperrzeit? Welche Werte nimmt man bestenfalls beispielsweise für die Signalsichtzeit oder Annäherungsfahrzeit an? Und wie wirken ein Mischbetrieb auf die Leistungsfähigkeit einer Strecke ein? Alle Antworten dazu liefert unser Streckendurchsatzrechner:

Zu den Eingabedaten unseres Streckendurchsatzrechners zählen die Zugsicherungsart, die Stellwerksbauform, verschiedene Fahrgeschwindigkeiten, die Blocklänge, die Zuglänge und vieles mehr. Viele Eingabeparameter wählt der Anwender mittels Dropdownfelder aus. Das Thema Streckendurchsatz ist in der Realität recht kompliziert, sodass hinter den vielen Eingabedaten auch Annahmen zu Grunde liegen. Diese legen wir ebenso offen.

Dennoch, die Eingabe lohnt sich. Aus all den genannten Eingabedaten resultieren nämlich die sechs geläufigen Sperrzeitbestandteile der Bahntechnik, aber auch die maximal möglichen Streckendurchsätze. Letztere wird meist auch als Streckenleistungsfähigkeit verstanden.

Bremsweg und Bremszeit

Wie lang ist der Bremsweg eines Zuges? Wie lange dauert überdies der Bremsvorgang? Ist der Bremsweg unabhängig davon, ob ein Zug von 250 km/h auf 200 km/h bremst oder ob er nur von 50 km/h bis zum Stillstand? Welchen Einfluss haben die Bremsstellungen und die Bremsarten, die für jeden Zug angegeben sind? Warum ist gegebenenfalls die Zuglänge relevant für die Bremszeit und für den Bremsweg? Und welchen Verzögerungswert nimmt man im Falle eines ausgewählten Fahrzeuges an? Alle Antworten dazu liefert unserer Verzögerungsrechner:

Zu den Eingabewerten des Verzögerungsrechners zählen neben der mittleren Bremsverzögerung des Zuges auch die Ziel- und Startgeschwindigkeit, die Bremsstellung des Zuges und gegebenenfalls die grobe Zuglängenkategorie. In dem hier nun veröffentlichten Verzögerungsrechner handelt es sich um zwei Zielwerte, nämlich um die resultierende Bremsweglänge und um die resultierende Bremszeit. Mit der Auswahlliste sind mehr als 99% aller Bremsvorgänge der realen Bahnwelt abgedeckt. Jeder Algorithmus wie auch dieser hier ist jedoch nur eine Idealisierung der realen Welt, deswegen gibt es entsprechende niedergeschriebene Annahmen.

Der Verzögerungsrechner ist übrigens in zwei verschiedenen Varianten ausgeführt. Einmal in der Form der Betriebsbremsverzögerung, dessen Ergebniswerte vor allem für fahrplantechnische Konstruktionen herangezogen werden. Die andere Form ist die Zwangs- und Notbremsverzögerung. Sie wird meistens für Regelwerte von Schutzstrecken, Durchrutschwege, Infrastrukturdimensionierungen oder für zugsicherungstechnische Aspekte herangezogen.

Systemeigenschaften im Schienenverkehr

Im Schienenverkehr gibt es grundlegende Eigenschaften, die sich von anderen Verkehrsträgern erheblich unterscheiden. Bahnsysteme sind Massenverkehrsmittel, die effizient ist. Sie sind indessen auch Systeme die aufwendig sind, und nur interdisziplinär erklärbar sind. Viele Eigenschaften führen zu einem besonderen Merkmal, dem Fahrplan, den es beispielsweise im Individualverkehr nicht gibt. Hier gehen wir der Frage nach, warum beispielsweise Züge nicht spontan und flexibel auf einer Bahninfrastruktur ohne Fahrplan fahren, wie es im Straßenverkehr der Fall ist.

Doch interessant bei dieser Betrachtung ist, dass alle Systemeigenschaften auf drei grundlegende Eigenheiten zurückzuführen sind. Das ist zum einen die Spurführung. Zum anderen die geringe Haftreibung. Und zum dritten die Verantwortlichkeit in der Verkehrsdurchführung. Gäbe es nur eines der drei Eigenheiten nicht, sähe der Schienenverkehr ganz anders aus, als er sich die letzten Jahrhunderte entwickelt hat. In dieser Videoserie behandeln wir alles rund um das Thema Bahn. Willkommen auf der Videoserie Bahntechnik und Bahnbetrieb. Schaut sie euch an!

In Arbeit: Systemeigenschaften des Schienenverkehrs

Eines der nächsten Videoinhalte sind die Systemeigenschaften des Schienenverkehrs. Mit diesem Kapitel möchten wir das System Bahn von einer anderen Perspektive aus beschreiben. Wir wollen dabei Vergleiche zu anderen Verkehrsträgern wie dem Flugzeug oder dem motorisierten Individualverkehr ziehen. Dadurch lassen sich die systematischen Eigenheiten der Bahn besser einordnen, abgrenzen oder verstehen. Die Inhalte sind naheliegend und verblüffend zugleich. Sie decken auf, dass sehr banale Sachen wie die simple Spurführung einen Fahrplan mit komplexen Strukturen notwendig macht. Das hier erarbeitete Kapitel ist somit das Vorkapitel zum ersten technischen Kapitel „Fahren im Raumabstand“ und allen anderen nachfolgenden Technikthemen.

Systemeigenschaften

Die Systemeigenschaften der Bahnen werden meist als selbstverständlich angesehen. Aber bei genauer Betrachtung sind sie durch eine Verkettung verschiedener anderer Eigenschaften erstaunlich gut begründet.